首页> 外文OA文献 >Low-rank and Sparse NMF for Joint Endmembers' Number Estimation and Blind Unmixing of Hyperspectral Images
【2h】

Low-rank and Sparse NMF for Joint Endmembers' Number Estimation and Blind Unmixing of Hyperspectral Images

机译:用于联合会员数量估计的低秩和稀疏NmF   高光谱图像的盲混合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimation of the number of endmembers existing in a scene constitutes acritical task in the hyperspectral unmixing process. The accuracy of thisestimate plays a crucial role in subsequent unsupervised unmixing steps i.e.,the derivation of the spectral signatures of the endmembers (endmembers'extraction) and the estimation of the abundance fractions of the pixels. Acommon practice amply followed in literature is to treat endmembers' numberestimation and unmixing, independently as two separate tasks, providing theoutcome of the former as input to the latter. In this paper, we go beyond thiscomputationally demanding strategy. More precisely, we set forth a multipleconstrained optimization framework, which encapsulates endmembers' numberestimation and unsupervised unmixing in a single task. This is attained bysuitably formulating the problem via a low-rank and sparse nonnegative matrixfactorization rationale, where low-rankness is promoted with the use of asophisticated $\ell_2/\ell_1$ norm penalty term. An alternating proximalalgorithm is then proposed for minimizing the emerging cost function. Theresults obtained by simulated and real data experiments verify theeffectiveness of the proposed approach.
机译:估计场景中存在的末端成员的数量是高光谱分解过程中的关键任务。该估计的准确性在随后的无监督解混步骤中至关重要,即端成员的光谱特征的推导(端成员的提取)和像素丰度分数的估计。文献中普遍采用的惯例是将端成员的数量估计和分解作为两个单独的任务独立地处理,以将前者的结果作为后者的输入。在本文中,我们超越了这种对计算要求很高的策略。更准确地说,我们提出了一个多约束优化框架,该框架将终端成员的数量估计和无监督的分解混合封装在单个任务中。这是通过适当地通过低秩和稀疏的非负矩阵分解原理来表述问题而实现的,其中通过使用复杂的$ \ ell_2 / \ ell_1 $范数惩罚项来促进低秩。然后提出一种交替的近端算法,以最小化新出现的成本函数。通过模拟和真实数据实验获得的结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号